100 research outputs found

    Assessing Returns and Risks of Three Subgroups of Agriculture Equities

    Get PDF

    Life Extension of High Temperature Structural Alloys by Surface Engineering in Gas and Vacuum Carburizing Atmospheres

    Get PDF
    The heat-treating industry is in need of heat- treatment furnace materials and fixtures that have a long service life and reduced heat capacity. Based on microstructural analysis of components that were used until failure in carburization furnace application, it was found that the primary reason for failure was the excessive carburization that leads to “metal dustingâ€� and subsequent cracking. Aluminizing is widely used to increase the high temperature oxidation and carburization resistance of nickel- based alloys. In this dissertation, RA330, RA602CA, 304L/316L, Inconel 625 alloys were selected to study their performance in an industrial carburization furnace for times up to two years. These alloys were exposed in both the as-fabricated and aluminized condition. The test samples were exposed to Cp=0.7-1.3% carburizing atmosphere at approximately 900℃ for 3 months, 6months, 12months, 18 months and 24months. The oxidation properties and oxide stability at high temperatures will be presented. In addition, the analysis of microstructural development during long term exposure experiments in an industrial carburizing furnace will be presented. These samples were characterized using optical and scanning electron microscope, EBSD, and x-ray diffraction. It was found that the aluminized alloys exhibited lower weight gain and carbon uptakes

    The Birth of Quark Stars: Photon-driven Supernovae?

    Full text link
    In this letter we propose a possible mechanism trying to alleviate the current difficulty in core-collapse supernovae by forming a strange quark star inside the collapsing core. Although the initial longtime cooling behavior of nascent strange stars is dominated by neutrino emissions, thermal emissions including photons and e±e^\pm pair plasma do play a significant role in the explosion dynamics under this picture. The key to promote a successful shock outside a bare strange star is more likely to be the radiation pressure caused by thermal photons rather than neutrinos in conventional models. We observed through calculation that radiation pressure can push the overlying mantle away through photon-electron scattering with energy (the work done by radiation pressure) as much as ~10^{51} erg if protoquark stars are born with temperatures higher than ~ (30-40) MeV. This result not only indicates that strange quark stars should be bare ever since their formations, it could also provide a possible explanation to the formation of fireballs in cosmic long-soft γ\gamma-ray bursts associated to supernovae.Comment: 13 pages, 3 figures, last version accepted to ApJ Letter

    Edit Temporal-Consistent Videos with Image Diffusion Model

    Full text link
    Large-scale text-to-image (T2I) diffusion models have been extended for text-guided video editing, yielding impressive zero-shot video editing performance. Nonetheless, the generated videos usually show spatial irregularities and temporal inconsistencies as the temporal characteristics of videos have not been faithfully modeled. In this paper, we propose an elegant yet effective Temporal-Consistent Video Editing (TCVE) method, to mitigate the temporal inconsistency challenge for robust text-guided video editing. In addition to the utilization of a pretrained 2D Unet for spatial content manipulation, we establish a dedicated temporal Unet architecture to faithfully capture the temporal coherence of the input video sequences. Furthermore, to establish coherence and interrelation between the spatial-focused and temporal-focused components, a cohesive joint spatial-temporal modeling unit is formulated. This unit effectively interconnects the temporal Unet with the pretrained 2D Unet, thereby enhancing the temporal consistency of the generated video output while simultaneously preserving the capacity for video content manipulation. Quantitative experimental results and visualization results demonstrate that TCVE achieves state-of-the-art performance in both video temporal consistency and video editing capability, surpassing existing benchmarks in the field.Comment: 8 pages, 7 figure

    New Rotor Position Redundancy Decoding Method Based on Resolver Decoder

    Get PDF
    In view of the frequent safety problems of electric vehicles, the research on accurately obtaining the rotor position of the motor through the resolver is an important means to improve the functional safety of the system. The commonly used resolver decoding method involves the resolver decoding chip method and software decoding method, but few studies integrate the two decoding methods. A single method of motor rotor position acquisition cannot meet the requirements of system functional safety. To fill this gap, this paper proposes a method to simultaneously integrate hardware decoding and software decoding in the motor control system. The decoding chip and software decoding obtain the angle data at the same time, and they provide redundancy to improve the functional safety of the electronic control system. Finally, the effectiveness of the proposed simultaneous operation of hardware decoding and software decoding is verified by experiments

    Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis

    Get PDF
    The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis
    corecore